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Abstract. The Rutherford scattering of a classical point charge moving in an attractive field
and obeying the Lorentz–Dirac equation is solved. The size of the spatial part of the incoming
4-velocity (γ 2 − 1)1/2 takes the values 1000, 100 and 0.1, respectively. Asymptotic expansions
of physical solutions are derived and used. Results are displayed and discussed. It is shown
that all solutions satisfy physical expectations. A condition for treating radiation reaction as
a perturbation is applied. Some earlier problems that have led to suggestions of unphysical
features of the Lorentz–Dirac equation are explained on a physical basis.

1. Introduction

The Lorentz–Dirac (LD) equation is the equation that, in the general case, describes the
motion of an elementary classical point charge (henceforth called a P-charge). It can be
shown [1, 2] that this equation fits the ordinary Lorentz equation of a classical particle whose
charge is distributed within a very small volume. This kind of charge is called a C-charge
below.

The LD equation takes the form

q2ȧµ = 1.5Maµ − 1.5qF
µν
extuν − q2(aαaα)uµ . (1)

In this paper Greek indices range from 0 to 3. The speed of light takes the valuec = 1.
The metric is diagonal and its entries are (1, −1, −1, −1). Derivatives are carried out
with respect to the particle’s proper timeτ . Thus, the 4-velocity isuµ = dxµ/dτ , the
4-acceleration isaµ = duµ/dτ and its 4-derivative iṡaµ = daµ/dτ where an upper dot
denotes differentiation with respect toτ . In equation (1),M and q denote the particle’s
mass and charge, respectively, andF

µν
ext is the tensor of the external electromagnetic fields.

In the literature, the terms of (1) that contain theq2 factor are generally called radiation
reaction. The term proper speed denotes the size of the spatial components of the 4-velocity
and its value is(γ 2 − 1)1/2. In the present work charges move in a plane, which is taken
to be the(x, y) one. Hereafter, subscriptsx and y denote the appropriate components of
4-vectors. Thus, the relativistic factorγ is

γ = (1 − v2
x − v2

y)
−1/2 = (1 + u2

x + u2
y)

1/2 . (2)

Assume now that charge is not quantized and one can evaluate infinitesimal quantities.
Thus, taking the limit whereM → 0, q → 0 andq/M = constant, one finds that theLD

equation (1) is cast into the ordinary Lorentz equation

Maµ = qFµνuν . (3)
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The ordinary Lorentz equation (3) differs from theLD one (1) in two points. The terms of
(1) containing theq2 factor are eliminated in (3) due to the limit process. Besides, since
q → 0, the fields associated with it become infinitesimal too. Hence, these field quantities
can also be ignored and the fields tensor of (3) represents the entire electromagnetic fields.
It can be shown [2] that if one constructs a C-charge then theLD equation (1) is obtained
from the ordinary Lorentz equation (3) if the spatial dimensions of the C-charge shrink
to zero. Here the overall self force, exerted by elements of the C-charge on other charge
elements of it, boils down to the terms of (1) that contain theq2 factor.

The third-order non-Newtonian nature of theLD equation is the underlying reason for
many debates of its meaning. Discussions in this subject and many references can be found
in books and articles [3–7]. Some authors have gone very far and suggested replacing theLD

equation by a variety of second-order Newtonian equations [8–12]. However, it has been
shown that the alternative equations are physically unacceptable [13–16]. This outcome
provides another indication of the significance of theLD equation.

Due to its non-Newtonian third order property, theLD equation of a P-charge contains
many solutions that do not correspond to a solution of the Lorentz force exerted on a C-
charge [2]. It turns out that these kinds of solutions of theLD equation have unphysical
properties. Hence, the problem of theLD equation is not to show that it contains unphysical
solutions but that, for every appropriate set of initial conditions, one can find a physical
solution.

An exception that does not satisfy this requirement was pointed out recently [17, 18].
These publications follow earlier works [19, 20]. Consider the case of a one-dimensional
motion of a P-charge attracted towards the origin by a Coulomb force. In this case it is
shown that the solution to theLD equation is unphysical and the P-charge eventually turns
back and moves away from the origin with a velocity that approaches the speed of light
(such a solution is called a runaway solution). It is clear that a solution of this kind does
not fit the motion of a C-charge satisfying the ordinary Lorentz equation (3), since, as is
well known, this equation conserves energy.

A remark that can be made on this issue is that it is not clear whether or not a solution of
the one-dimensional motion is the limit of solutions to the two spatial dimensions problem
of the LD equation in cases where the impact parameter tends to zero [2]. Obviously, it is
the limit where the impact parameter tends to zero that has a physical meaning, because, in
reality, there is no motion whose impact parameter vanishes identically. This point increases
the interest in the small impact parameter problem of the Rutherford scattering of a P-charge
obeying theLD equation.

It is evident that if the impact parameter of a Rutherford scattering is small, acceleration
at the vicinity of the origin is large, entailing radiation of a large amount of energy. It
follows that in these cases the incoming particle must move ultrarelativistically. The main
objective of the present work is to investigate this kind of motion and to compare it to the
corresponding non-relativistic one. To this end, solutions are grouped into three sets where,
in the remote past, the proper speed takes the values 1000, 100 and 0.1, respectively.

It turns out that the impact parameter of the solutions of each group has a minimum
which is greater than zero. Relying on energy conservation of electrodynamics and on
the derivation of theLD equation of P-charges from the Lorentz equation of C-charges,
one expects that an incoming charge whose impact parameter is smaller than the above-
mentioned minimum is captured by the attracting field. As explained later, solutions of
the LD equation reported here are solved backwards in time, using inertial motion at
τ = ∞, r = ∞ as initial conditions. Hence, capture phenomena are beyond the scope
of the present work.
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The specific problems treated and the method used for extracting the solutions are
described in the second section. The third section contains a presentation of the results and
a discussion of their meaning. The outcome of the present work indicates that every case
of Rutherford scattering of theLD equation has a physically acceptable solution. The fourth
section contains an evaluation of similarities and differences of the consequences of this work
and those of an earlier article discussing the same topic [21]. Opinions ascribing unphysical
features to solutions of small impact parameter are discussed. Concluding remarks are made
in the last section.

2. Solution of the Lorentz–Dirac equation

The LD equation (1) is solved here in its original form and no variable transformation is
utilized. Thus, the proper timeτ is the independent variable. The system of units used
yields −q1 = q2 = M = 1, whereq1 is the charge of the particle fixed at the origin andq2

is the charge of the moving particle. Hence, the external electrostatic field is

E = −r/r3 . (4)

The problem consists of two coupled third-order differential equations of the 1 and 2 (namely
x andy) components of (1):

ȧx = 1.5ax + 1.5γ
x

(x2 + y2)3/2
− (aαaα)ux (5)

ȧy = 1.5ay + 1.5γ
y

(x2 + y2)3/2
− (aαaα)uy . (6)

Carrying out a straightforward calculation, one finds

aαaα = −(a2
x + a2

y + (uxay − uyax)
2)/γ 2 . (7)

An application of (2), (7) and the definitions ofuµ andaµ, as given after (1), indicates that
(5) and (6) can be written in terms ofx, y and their derivatives.

Using standard substitutions, one can cast (5) and (6) into a system of six first-order
differential equations. As is shown elsewhere [21–23], a solution of theLD equation that
proceeds forwards in time yields unstable and unreliable results. Hence, equations (5) and
(6) are solved backwards in time. However, the terms ‘in’ and ‘out’ take their usual meaning
where ‘in’ labels quantities atτ = −∞ and ‘out’ labels those ofτ = ∞.

In this work, the axis of the proper timeτ ∈ (−∞, ∞) is divided into three parts: an
asymptotic part of the remote past, a finite interval when the moving charge is not very far
from the origin and another asymptotic part describing the motion in the distant future. The
solution at the second part is obtained from a stepwise differential equation solver which
is based on the predictor-corrector method. Truncated asymptotic expansions [24, 25] are
used for the asymptotic regions.

It has already been pointed out that asymptotic expansions can be used for the one
spatial dimension problem of theLD equation [23, 26]. Like here, the numerical method of
these papers uses three regions as defined above. The solution is fitted at the two common
boundary points of the intermediary interval and each of the asymptotic regions. It is shown
here that this method can also be utilized for the motion in two spatial dimensions. To this
end, consider the special case where the asymptotic motion is parallel to thex-axis.

As in the case of a motion in one spatial dimension, the asymptotic expansion relies
on the fact that equations (5) and (6) do not depend explicitly on time. The expansion is
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written as a power series inx−1. Thus, one writes thex-component of the 4-velocity as

ux(x) =
∞∑

k=0

dkx
−k (8)

and they-coordinate takes the form

y(x) =
∞∑

k=0

bkx
−k . (9)

Using the relation

d

dτ
= dx

dτ

d

dx
= ux

d

dx
(10)

as well as (2) and (7), one can cast all terms of (5) and (6) into quantities written by means
of (8), (9) and their derivatives with respect tox. The most significant term of each of the
expressions (8) and (9) is defined by the initial conditions. Thusd0 is the asymptotic proper
speed andb0 is the positive or negative value of the impact parameter. The other terms
of the expansion are determined recursively. The general asymptotic expansion is obtained
from the special case by applying a rotation in the(x, y) plane. It follows that a general
asymptotic expansion depends on three free parameters.

The actual calculation is carried out in the following way. Given final values of the
proper speed and of the impact parameter, one finds the asymptotic solution in the distant
future. This solution is considered valid at points which are far enough from the origin.
In most cases, the asymptotic region is defined for|x| > 20 000. The values ofx, ux ,
ax , y, uy anday obtained at the boundary of this region are used as initial conditions for
the stepwise procedure that solves the problem backwards in time. This method yields a
solution at the region where the moving particle is not very far from the origin. To the
solution obtained in this way one fits an asymptotic solution that holds in the remote past.
In this way, one solution of theLD equation is known for all values ofτ . Varying uout, one
can find a solution whereuin fits the required value (namely, 1000, 100 or 0.1, respectively)
with an appropriate numerical accuracy.

3. Properties of the solutions

The discussion of this section is divided into three parts. Tests of the accuracy of the
solutions are described in the first subsection. Next, some general properties of the solutions
are presented and discussed. The last subsection is devoted to the relations of solutions of
the LD equation to those of the ordinary Lorentz equation.

3.1. The accuracy of the solution

Two accuracy tests have been carried out. The first one is the energy balance of each
solution. The quantity

δE = γin − γout − Erad (11)

is the difference between the change in the kinetic energy of the moving charge during the
entire process and the total amount of energy radiated:

Erad = − 2
3

∫ ∞

−∞
aαaαγ dτ . (12)
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This expression is integrated numerically and the integrand is obtained from (2) and (7).
Obviously, a physical solution cannot be considered accurate unlessδE is small enough.

The second test evaluates the fit of the acceleration componentsax and ay at the
boundary of the asymptotic region of the remote past. As described in the second section,
the calculation starts atτ = ∞ and proceeds backwards in time. At the boundary of the
asymptotic region of the remote past, a stepwise solution of equations (5) and (6) consists
of six quantities

{x, ux, ax, y, uy, ay} . (13)

On the other hand, as concluded in the paragraph following (10), an asymptotic expansion
depends on three free parameters: the asymptotic proper speedu, the impact parameterb and
the angle of rotation in the(x, y) plane. To these quantities, one should add the independent
variablex, by means of which specific values of (8) and (9) are determined. Thus, there
are just four independent parameters that can be used for fitting the six quantities (13).

In the present work the asymptotic expansion was calculated so thatx, ux, y and uy

took the required values as given in (13). Thus, the continuity of the components of the
accelerationax and ay at the boundary point discussed here indicates the accuracy of the
calculations.

The two kinds of test show that the accuracy of the results is not less than seven decimal
points. Hence, it can be stated that the accuracy of the numerical solutions described below
is satisfactory.

3.2. Some general properties of the solutions

A graphical presentation of parts of the trajectories of several solutions is seen in figures 1(a)
to (c). Each figure presents solutions that differ by the impact parameterbin and,
consequently, by the scattering angle. In every figure, the trajectory whose scattering angle
is the largest belongs to the solution which is nearest to the capture threshold. Here and
elsewhere, omission of units on figures means that units of this work are used.

In each of the figures 1(a) to (c), it is seen that the smaller the impact parameter, the
larger the scattering angle. A comparison of the three figures indicates that the maximal
scattering angle is larger if the initial proper speeduin is smaller. These features are also
seen later in other figures.

The general shape of the ultrarelativistic solutions of figures 1(a) and (b) is different
from that of the non-relativistic ones, depicted in figure 1(c). The scattering angle of the
ultrarelativistic solutions is extremely small for all trajectories whose impact parameter is
not very close to the capture threshold. On the other hand, in the non-relativistic case, it
is seen that the trajectories bend considerably even if the impact parameter is far from the
capture threshold.

A common property of the solutions is the direction of the curvature of the trajectories. It
is found that the curvature is in accordance with behaviour of a particle satisfying a second-
order Newtonian equation which isattracted towards the origin. It should be pointed out
that theLD equation (1) is a third-order equation and one cannot be sure of the shape taken
by trajectories of its solutions. Thus, the curvature obtained is compatible with physical
expectations.

In the present work, the number of different solutions within each set varies from about
30 to 60. These numbers enable the use of smooth curves in the following figures. The rather
large variation of the impact parameterbin and the significance of processes that take place in
cases where this quantity is small, leads to the choice of a logarithmic scale for this variable.
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Figure 1. Portions of several trajectories. The moving
charge travels from right to left in the(x, y) plane. It
bends near the origin and recedes towards infinity. (See
the text). (a) Trajectories of solutions whose initial
velocity uin = 1000. The impact parameterbin of
solutions depicted here varies from about 1.05 to 0.43.
(b) The corresponding data foruin = 100. Here the
impact parameter varies from about 1.9 to 0.7 (c) The
corresponding data foruin = 0.1. Here the impact
parameter varies from about 120 to 46.5. Notice that
the scale of this figure differs from that of the other
ones.

Figure 2. The impact parameter of the outgoing particle,
bout, is depicted as a function of that of the incoming one
bin. The full curve refers to solutions whose initial velocity
uin = 1000, the broken curve pertains to solutions where
uin = 100 and the chain curve represents those where
uin = 0.1. The thin line satisfiesbout = bin and is drawn
for reference.

The dependence of the impact parameter of the outgoing charge,bout, on that of the
incoming one,bin, is displayed in figure 2. It is seen that for large values ofbin, the relation
bout = bin holds to a very good approximation. On the other hand,bout increases steeply
asbin approaches the capture threshold. These properties will be discussed in more detail
in the next subsection. Examining the ultrarelativistic sets at the intermediary region, one
finds thatbout becomes less thanbin. This feature does not exist in the non-relativistic
caseuin = 0.1. One can also observe that the curves of the two ultrarelativistic sets of
solutions nearly coincide if the impact parameter is not very close to the corresponding
capture threshold.
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Figure 3. The dependence of the scattering angleθ on
the impact parameter of the incoming charge. Each curve
denotes a set of solutions as in figure 2.

Figure 4. The ratio between the entire energy radiated
and the initial kinetic energy is plotted as a function of
the impact parameter of the incoming charge. Each curve
denotes a set of solutions as in figure 2.

In figure 3, the scattering angle is plotted as a function ofbin. Referring to the
ultrarelativistic cases, it is seen that foruin = 1000 the scattering angle practically vanishes
if bin > 1. For uin = 100, the corresponding condition isbin > 2. On the other hand,
the scattering angle of the non-relativistic case does not vanish even forbin = 1000. In all
cases, the scattering angle increases as the impact parameter decreases, a property which
is in accordance with intuition. A sharp increase of the scattering angle is seen near the
capture threshold. This feature makes sense. Indeed, near the capture threshold, the velocity
of the outgoing particle becomes smaller and the duration of its interaction with the external
field is longer.

The energy radiated during the entire process is depicted in figure 4. In order to put
the results of the three sets on the same scale, the ratio between the radiated energy and the
initial kinetic energy is plotted. It is seen that in all cases, the amount of energy radiated
increases asbin decreases. This property is understandable, since approaching the origin’s
vicinity with a smaller impact parameter, the charge is affected by a stronger field. It makes
sense to find that a motion in a stronger field, with which a bigger acceleration is expected
to be involved, yields a greater amount of radiated energy. Another feature seen in this
figure is the approximate coincidence of the lines of the two ultrarelativistic sets until data
of uin = 100 is very close to the capture threshold. This phenomenon was also seen in
figure 2.
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A comparison of the data of the ultrarelativistic sets of figures 3 and 4 indicates that
a small but non-negligible amount of energy is radiated for 2< bin < 10, whereas the
corresponding scattering angle practically vanishes. This property makes sense, because an
ultrarelativistic particle that loses a fraction of its energy still moves ultrarelativistically.
In these circumstances, its path does not bend under the influence of the not very strong
external field.

3.3. The relevance of the ordinary Lorentz equation

The substitutionFµν → F
µν
ext into the ordinary Lorentz equation (3) yields a second-order

equation that consists of the first and the second terms on the right-hand side of theLD

equation (1)

Maµ = qF
µν
extuν . (14)

It should be noted that this equation is unphysical because it does not account for the energy
lost to radiation. Here the relations between solutions to the Rutherford scattering of the
LD equation (1) and the corresponding ones of (14) are discussed.

Obviously, the behaviour of solutions to these equations cannot be similar unless initial
conditions are the same and if the radiation reaction terms of (1) can be ignored or, at least,
can be treated as a small perturbation. Hereafter, this requirement is called the perturbation
requirement. In the following lines it is shown how far from the origin one must go in
order to satisfy the perturbation requirement.

Assume that the perturbation requirement holds. It follows that (14) is satisfied to a
good approximation. The calculation is carried out for an asymptotic motion which is
parallel to thex-axis and forx > 0. Hence|y| � x. For this reason and in order to
simplify the presentation, they-coordinate is omitted from the following expressions and
no subscript is used for notation. Using equations (2) and (14), one finds that in a Coulomb
field E = −1/x2, the absolute value of the derivative ofa is

|ȧ| =
∣∣∣∣ d

dτ
a

∣∣∣∣ '
∣∣∣∣ q

M

d

dτ

γ

x2

∣∣∣∣ '
∣∣∣∣a 2qu

Mx

∣∣∣∣ . (15)

The derivation of (15) is obtained on the basis of the relationsγ > 1, x � 1 and on
the assumption that (14) is a good approximation. As can be seen from the expansion
(8), at asymptotic regions, the quantityaαaα is smaller thanȧ by an order of magnitude.
Introducing the factor2

3, one finds from (15) that, at asymptotic regions, a necessary
condition for the applicability of the perturbation requirement is

|4qu/3Mx| � 1 . (16)

Relation (16) proves that the perturbation requirement depends not only on the distance
from the origin but also on the proper speed of the moving charge. For an ultrarelativistic
motion, whereu � 1, equation (16) is valid only at places that are very far from the origin.
Further aspects of the perturbation requirement are discussed in the next section.

Using vectorial notation, one can derive expressions analogous to (16) which hold not
only at asymptotic regions. Now, if a charge moves non-relativistically and its acceleration
is small, then the perturbation requirement is expected to hold. Two aspects of this kind of
motion are discussed in the rest of this section.

Let us examine the set of solutions where the initial velocity is non-relativistic. Figure 4
shows that in this case the radiated energy can be ignored for solutions wherebin > 200.
Moreover, figure 2 indicates that at this regionbout = bin. These properties are compatible
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Figure 5. The final angular momentum of solutions whose
bin is near the capture threshold, is plotted as a function of the
impact parameterbout of the outgoing particle (see the text).
Each curve denotes a set of solutions as in figure 2.

with those of the radiationless equation (14). This outcome is consistent with physical
expectations.

A non-relativistic motion is also found along a portion of trajectories of solutions whose
impact parameterbin is close to the capture threshold. In these cases, the particle radiates
most of its kinetic energy and recedes towards infinity in a rather slow motion. The very
close approximation to a vertical line which is seen in this part of figure 2 indicates that
the impact parameterbin is about the same for solutions at this region. An examination
of the solutions shows that the corresponding trajectories are very close until the moving
charge leaves the vicinity of the origin and reaches a pointP which is rather far from it.
In the rest of this subsection, discussion is limited to solutions that are very near to the
capture threshold. Now, if after reaching pointP while trajectories are still very close
to one another, the motion behaves like (14), then the variation of the particle’s angular
momentum is negligible.

Plots of the final angular momentum are seen in figure 5. Notice that here the horizontal
axis is the vertical axis of figure 2. Hence, for each set, the solution that is nearest to the
capture threshold is atbout = 1000. In figure 5 one can see that for all the sets of solutions
reported here, the final angular momentum becomes constant near the capture threshold. The
foregoing discussion shows that this result is in accordance with a non-relativistic motion
for which (14) is a good approximation. Now, the final angular momentum of the outgoing
particle isuoutbout. As a solution approaches the capture threshold, its final proper speed
uout decreases to zero. It follows that the impact parameterbout should increase beyond all
bounds asbin approaches the capture threshold. This result explains the very steep feature
of the plots depicted in figure 2 at the region of smallbin.

4. A further discussion of the physical meaning of the solutions

As reported in the previous section,all solutions obtained above are compatible with physical
expectations. The topic of the present work has also been discussed earlier [21]. Some of the
solutions reported here, where the initial proper speed is 1000, are related to those discussed
in section 4 of [21]. A minor difference is associated with the asymptotic expansion used
here. This expansion yields solutions defined at all values of the proper timeτ and help
showing the high numerical accuracy obtained here. The asymptotic expansion is not applied
in [21], where approximations are used instead. Thus, in [21], the motion is assumed to
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be inertial at the regionrout > 1000. Physically meaningful solutions have been found in
[21] too. However, the authors of [21] claim to find exceptions and state that ‘the peculiar
behaviour noted here seems to be indicating a breaking down of the Lorentz–Dirac equation
even for values ofbI somewhat larger than unity’. (See section 5 of [21]. In [21]bI is the
same asbin of the present work.) It is shown in this section that the results obtained here
amend this point of [21].

In order to explain the reasons for their suggestions of unphysical features of solutions
having a small value ofbin, the authors of [21] examine the distance from the origin where
energy balance is restored. A second quantity used for this purpose is the sign of the scalar
product of the ordinary 3-vectorsa ·v. A third quantity is the ratioR, which, in the notation
of the present work, takes the form

R = a/|γE| . (17)

Here a = (a2
x + a2

y)
1/2, where ax and ay are the components of the 4-acceleration,

respectively, andE is the electric field.
It is stated in section 5 of [21] that energy imbalance is found at a distance from the

origin r = 1000 and that it indicates a peculiar behaviour of theLD equation. However, this
property is completely understandable. Indeed, the contribution of the 2ȧ/3 term (sometimes
called the Schott term), affects the energy balance of theLD equation. As is shown above,
the Schott term cannot be ignored if the perturbation requirement (16) is not satisfied. Now,
at r = 1000, the left-hand side of (16) (which also depends on the proper speed) is greater
than 1 if the proper speeduin ' 1000. Hence, the perturbation requirement is strongly
violated. This outcome proves that energy balance should be tested at points that are much
further away from the origin. It can be concluded that the claim made in [21], concerning
energy imbalance at a distancer = 1000 cannot be used for discrediting the physical merits
of the LD equation.

The change of sign ofa · v of the incoming charge at large distances from the origin,
indicates that, at these regions, theLD equation departs from features of the second-order
equation (14), where radiation reaction is ignored. The same is true for the deviation of the
ratio (17) from unity. As is well known, at large distances from the origin, the Coulomb
field is weak. Now, the problem is whether or not a weak external field should be considered
as a sufficient condition for the validity of the assumption that radiation reaction should be
much smaller than other terms of theLD equation.

As pointed out in the introduction, theLD equation of P-charges can be derived from
the Lorentz equation of C-charges [2]. To this end, the entire electromagnetic fields tensor
at the location of a C-charge is split as follows:

Fµν = F
µν
ext + F

µν

self . (18)

Here F
µν
ext is associated with all charges, except the C-charge whose motion is examined.

The analysis shows that the effect ofF
µν

self on the motion of a C-charge, whose spatial size
shrinks to zero, can be replaced by the radiation reaction terms of theLD equation. This
analysis casts a new light on the radiation reaction terms of theLD equation. In particular,
if one examines the motion of C-charges, one finds no physical basis for the claim thatF

µν

self
must be much smaller thanFµν

ext at asymptotic regions where the latter is weak. (The two
field quantities on the right-hand side of (18) have equal rights!) Turning now to P-charges,
one finds that a weakFµν

ext does not justify the demand that radiation reaction terms of theLD

equation should make a small perturbation. As is explained above, in asymptotic regions,
relation (16) is the right criterion for treating radiation reaction as a small perturbation.
This relation also depends on the proper speed of the moving charge. It follows that this
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discussion relieves theLD equation from claims [21] of having unphysical properties in
regions whereFµν

ext is weak.
The following analysis of the ultrarelativistic cases solved in this work show that the

numerical results are consistent with the perturbation requirement (16). Let us examine
each of the solutions of the two ultrarelativistic sets and findr̄. r̄ is the distance from the
origin of the incoming charge which is taken at a point where the ratio

R̄ ≡ 2
3|ȧ|/|a| = 0.01 (19)

holds. At this point radiation reaction terms are still small but cannot be ignored. Evidently,
the size ofr̄ determines that of the electric Coulomb field. This test indicates the rate of the
relative growth ofȧ. Consequently, one finds information on deviation of theLD equation
from the radiationless equation (14).

For all cases of the set whereuin = 100, r̄ varies within the small interval
[13 372, 13 401]. On the other hand, the impact parameterbin takes its full range
[1000, 0.6986]. The following argument emphasizes this point. Evidently, max(bin) = 1000
is much greater thanδr̄ = 29. Moreover, if solutions whosebin > 100 are excluded then the
range ofr̄ decreases considerably and one findsr̄ ∈ [13 400.7, 13 401]. The results of the
set whereuin = 1000 are analogous. Herer̄ ∈ [134007, 134010] andbin ∈ [1000, 0.4386].

The foregoing findings indicate several properties of solutions of ultrarelativistic motion
at asymptotic regions. It is seen that a small, but not negligible, contribution of radiation
reaction terms takes place at a very long distance from the source of the field. It is also seen
that, at asymptotic regions, the relative size of the radiation reaction terms depends on the
ultrarelativistic proper speed and on the distance from the originr (namely, on the electric
field), but is practically independent of the impact parameterbin. Moreover, a comparison
of the results of the two ultrarelativistic sets shows that asuin is multiplied by 10, the
distance wherēR = 0.01 is multiplied by about the same factor. This property is consistent
with the form of the condition for the perturbation requirement (16) which is practically a
function of (u/r).

This analysis shows that for an ultrarelativistic incoming charge,ȧ grows faster asuin

is greater. Evidently, the influence ofȧ may change the sign of the acceleration even at
remote regions where botha and ȧ are very small. By the same token, the ratioR of
(17) might take large values while botha and E are very small. In this way, the other
two arguments made in section 5 of [21], namely the change of sign ofa · v and the
large value of the ratioR of (17) are settled. Moreover, it is also shown that, unlike the
interpretation of [21], these phenomena are practically independent of the impact parameter
bin (provided the other initial value,uin, is held fixed). The last conclusion is consistent
with the mathematical structure of the equation. Indeed, at asymptotic regions, where the
impact parameterbin � r, the LD equation is not affected by a variation ofbin.

5. Concluding remarks

The LD equation is discussed in the present work. Solutions of Rutherford scattering in an
attractive Coulomb field of charges whose initial proper speed takes the values 1000, 100
and 0.1, respectively, are presented. The impact parameter of the incoming particle varies
from a value which is very close to the capture threshold up to 1000. It is shown that
physically meaningful solutions exist for all cases discussed here. Asymptotic expansions
of solutions to this equation are derived. The general shape of the trajectories is like that of
a particle obeying a second-order Newtonian equation which is attracted towards the origin.
A condition is found for the similarity of solutions of theLD equation and the corresponding
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ones of the ordinary Lorentz equation of a charge moving in a fieldE = −r/r3. It is proved
that at asymptotic regions, this condition depends on the distance from the origin and on the
proper speed. In the non-relativistic case discussed here foruin = 0.1, it is shown that if the
impact parameter is greater than 200, then solutions of theLD equation and of the Lorentz
one have the same properties. It is proved that asbin approaches the capture threshold,bout

increases beyond all bounds. Some other general features of the solutions are displayed and
discussed.

An analysis of the ultrarelativistic cases shows that radiation reaction terms become
relatively significant at regions that are far from the origin. It is also shown that asymptotic
phenomena are practically independent of the size of the impact parameterbin. The analysis
settles problems of asymptotic motion and substantiates the physical merits of theLD

equation of Rutherford scattering.
It has been pointed out that there is no physical solution to the one-dimensional motion

of a charge obeying theLD equation, if the Coulomb field is attractive [17–20]. The present
work sets an upper limit to this problem and shows that solutions to the corresponding
Rutherford scattering have a physical meaning. As a matter of fact, cases discussed in this
work do not approach the limit of one-dimensional motion. Indeed, the numerical algorithm
used here starts atτ = ∞ when the moving charge is infinitely far from the origin and
proceeds backwards in time. Therefore, the solutions found here have an impact parameter
bin which is greater than the capture threshold. The finite interval of impact parameters
whose size is smaller than that of the capture threshold makes a gap that cannot be crossed
by the numerical method used here. An attempt to investigate small impact parameters that
approach the one-dimensional limit should use a different numerical algorithm. This topic
is beyond the scope of the present work.
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